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Abstract. In this study, we investigate applying deep learning (DL) models on a regional climate simulation produced by the
Terrestrial Systems Modelling Platform (TSMP Ground to Atmosphere G2A) for vegetation health modeling and agricultural
drought assessment. The TSMP simulation is performed in a free mode and the DL model is used in an intermediate step
to synthesize Normalized Difference Vegetation Index (NDVI) and Brightness Temperature (BT) images from the TSMP
simulation over Europe. These predicted images are then used to derive different vegetation and drought indices like NDVI
anomaly, BT anomaly, Vegetation Condition Index (VCI), Thermal Condition Index (TCI), and Vegetation Health Index (VHI).
To ensure reliability and to assess the model applicability with different seasonality and spatial variability, we provide an
analysis of model biases and uncertainties across different regions over the Pan-Europe domain. We further provide an analysis
about the contribution of the input variables from the TSMP model components to ensure a better understanding of the model
prediction. A comprehensive evaluation on the long-term TSMP using reference remote sensing data showed sufficiently good
agreements between the model predictions and observations. While model performance varies on the test set between different
climate regions, it achieves a mean absolute error (MAE) of 0.027 and 1.90 K° with coefficient of determination (R?) scores
of 0.88 and 0.92 for NDVI and BT, respectively, at 0.11° resolution for sub-seasonal predictions. Our study could be used
as a complimentary evaluation framework for climate change simulations with TSMP. Moreover, the developed DL model
could be integrated with data assimilation and used for down-stream tasks, i.e., modelling the impact of extreme events on
vegetation responses with different climate change scenarios. In summary, we demonstrate the feasibility of using DL on a
TSMP simulation to synthesize NDVI and BT, which can be used for agricultural drought forecasting. Our implementation is

publicly available at the project page (https://hakamshams.github.io/Focal-TSMP).

1 Introduction

There is a growing consensus of the need to improve our state of knowledge on extreme events under a changing climate.
According to recent studies on historical trends and current projections, different regions of the Earth would be more vulnerable
to extreme events such as flash droughts (Christian et al., 2021, 2023; Yuan et al., 2023), meteorological and agricultural
droughts (Essa et al., 2023), forest wildfires (Patacca et al., 2023), and water storage deficiency (Pokhrel et al., 2021). The

expected increase in concurrence of agricultural droughts would cause crop production losses and vegetation mortality. In
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particular, people in regions with fragile adaptation and mitigation strategies will be more effected. Forecasting the vegetation
responses and their evolving patterns conditioned on climate scenarios is therefore a requirement to form better mitigation and
adaptation strategies.

Nowadays, satellite observations around the world provide a near real-time global monitoring of vegetation and drought
conditions. However, in order to prepare for long-term alleviation plans, it is desirable to forecast information about vegetation
health and agricultural drought events in the future. While short-term forecasting, i.e., for a few weeks, on a large-scale is very
useful for short-term planning, a more significant contribution could be achieved with a much longer forecasting time in the
future (Marj and Meijerink, 2011). In relation to this, there has been a growing line of research over the past in improving
and deploying climate modelling that attempt to simulate the underlying processes of the Earth system (Shrestha et al., 2014;
Lawrence et al., 2019). These modelling platforms are essential to understand changes in the water cycle and to realize and
forecast climatic extreme events in a model simulation (Miralles et al., 2019). Meanwhile, many application and domain
dependent drought indices have been proposed to capture various drought signals for agricultural systems (Meza et al., 2020).
Vegetation products derived from satellite land surface reflectances are used in particular as proxies for vegetation health and
consequently as agricultural drought indicators (Qin et al., 2021; Vreugdenhil et al., 2022). Based on these recent developments
in Earth modelling platforms and remote sensing vegetation indices, it is natural to ask the question of whether the systems of
agricultural drought forecasting could be further enhanced.

In this study, we address the problem of predicting satellite-derived vegetation indices from a free evolving simulation
based on the Terrestrial Systems Modelling Platform (TSMP Ground to Atmosphere G2A) (Furusho-Percot et al., 2019). More
precisely, we predict from the simulation the Normalized Difference Vegetation Index (NDVI) and Brightness Temperature
(BT) as they would have been observed from AVHRR NOAA satellite systems. NDVI is computed from the reflectance in
visible red (pr) and near-infrared bands (pxrr). It is a standard product that is extensively used in applications for vegetation
health and crop yield (Tucker, 1979). While BT is a calibrated spectral radiation derived from the thermal band (p;g) and
can be used for temperature-related vegetation stress monitoring (Kogan, 1995a). We assume that a climate simulation (i.e.,
TSMP simulation) that is close to the true state of the Earth should be able to reproduce vegetation products (i.e., NDVI and
BT) regardless of the target satellite platform (in this study AVHRR NOAA). Radiative transfer models (RT) are normally
used to synthesis such spectral band information of specific satellite systems. Physically-based models benefit from the fact
that they are built upon rich domain knowledge in physics. However, there are still many challenges related to these models.
This includes the constrained parametrization for specific bands under various surface-atmosphere conditions (i.e., different
cloud schemes and detailed representation of scattering processes) and satellite parameters (i.e., zenith and the scattering
angles) as well as assumptions about albedo/emissivity and the high computational resources to run the model (Geiss et al.,
2021; Scheck, 2021). Besides, there exist climate-vegetation models which directly simulate the vegetation dynamic based
on ecological processes and statistical modeling. Nevertheless, they are limited by the complexity of the processes and poor
generalization (Chen et al., 2021). Recently, deep learning (DL) models have become popular to build a predictive model for
tasks that include complex or intractable cause and effect relations within the Earth system (Bergen et al., 2019; Tuia et al.,

2023). In addition, DL can be used to handle biases implicitly, thus simplifying the entire workflow (Schultz et al., 2021). For
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instance, DL was recently used in climate modelling for bias correction and down-scaling to project extremes (Blanchard et al.,
2022), weather forecasting (Lam et al., 2022; Chen et al., 2023; Bi et al., 2023; Ben-Bouallegue et al., 2023), and generalized
multi-task learning (Nguyen et al., 2023; Lessig et al., 2023). In this work, we thus propose a DL approach based on focal
modulation networks (Yang et al., 2022) to simultaneously predict NDVI and BT from the model simulation. In this way, we
leverage a simulation model for long-term forecasting and DL for mapping the forecast variables to vegetation related indices
that are not part of the simulation model.

As an example of a down-stream application, we apply the predicted NDVI and BT for long-term agricultural drought
forecasting, where we derive Vegetation Condition Index (VCI), Thermal Condition Index (TCI), and Vegetation Health Index
(VHI) (Yang et al., 2020) as agricultural drought indicators from the predicted NDVI and BT. As part of this, we analyze
whether a DL model trained on simulation produced by TSMP can be used for vegetation health forecasting at a continental-
scale by identifying regions and periods of uncertainty in the model prediction. Moreover, we analyze the importance of the
input explanatory variables with explainable artificial intelligence. We achieve an overall mean absolute error (MAE) of 0.027
and 1.90 K° with coefficient of determination (R?) scores of 0.88 and 0.92 in predicting NDVI and BT, respectively for
sub-seasonal predictions at 0.11° resolution. Our results indicate that a direct prediction of vegetation products from TSMP
with deep learning is an effective way to examine the overall predictive capability of TSMP to forecast agricultural drought
events. The results suggest that a model trained on TSMP to predict vegetation products could be valuable for scenario-based
assessments of vegetation response to climate change.

The rest of this article is organized as follows. Section 2 reviews the related literature. Section 3 describes the datasets that
are used in the experiments. The methodology is described in Sect. 4. Section 5 and 6 include the experimental results. An
analysis about variable importance is given in Sect. 7. Finally, a discussion and conclusions are provided in Sect. 8 and 9,

respectively.

2 Related works
2.1 Radiative transfer models

Forward operators like a radiative transfer (RT) solver can synthesize satellite images from the output of a numerical weather
prediction (NWP) model (Li et al., 2022). These synthetic images can then be used to evaluate the representation capability
of the model or for data assimilation purposes, i.e., to verify the spatial structure of clouds in the atmospheric models. We
briefly review some related works for synthetic satellite imagery. Zhang et al. (2015) applied the radiative transfer for TOVS
(RTTOV) (Saunders et al., 2018) with input from the Weather Research and Forecasting (WRF) model (Skamarock et al.,
2019) to model BT of oxygen and water-vapor absorption bands from geostationary satellites. Scheck et al. (2016) developed
a method for fast satellite image synthesis (MFASIS), a fast 1D RT for data assimilation based on a pre-computed look-up
table with the discrete ordinate method (Stamnes et al., 1988). The reflectance at the top atmosphere is approximated by a
mathematical function that takes into account the assumed relevant variables of simplified vertical profiles from the numerical

weather forecasting COSMO-DE from the German Weather Service (DWD) and satellite parameters. They tested their model
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for two visible satellite bands (p;: 0.6 um and p2: 0.8 um) from the spinning enhanced visible and infrared imager (SEVIRI).
In Scheck et al. (2018), they extended their work to include more 3D RT effects. Another work for developing a RT model for
visible and near infrared radiances was presented in (Wang et al., 2013). Furthermore, Geiss et al. (2021) analyzed the impact
of cloud-related representations on visible and infrared image synthesis. They conduct a direct comparison between observed
images from SEVIRI (p;: 0.6 um, ps: 0.8 um, and p3: 10.8 um) and their equivalent synthetic images computed based on
Scheck et al. (2016) and Saunders et al. (2018) from the icosahedral non-hydrostatic model (ICON-D2, Zingl et al. (2015)).
More recently, machine learning (ML) methods have being used to support data assimilation systems (Diiben et al., 2021;
Valmassoi et al., 2022). Such methods can be applied directly to NWP with minimum design choice of predictor variables
and are considered as promising to automate the processes, i.e., ML can be used as an emulator for some physical processes.
Chevallier et al. (2000) used as one of the first works neural networks for long-wave RT. Later, in a work by Lakshmanan et al.
(2012), a multi-layer perceptron (MLP) was used to generate satellite images in the visible bands for model visualization. To
generate training data, they applied the successive order of interaction RT solver (Heidinger et al., 2006) to compute synthetic
satellite images for several days from the output of the WRF model. Ahmad et al. (2019) relied on traditional ML to predict
6 independent passive microwave BT spectral differences over snow-covered land. They used assimilated input from Noah-
multiparameterization (Yang et al., 2011) and predicted satellite observations derived from the Advanced Microwave Scanning
Radiometer for Earth Observing Systems (Kelly, 2009). Shi et al. (2018) performed a short-term assimilation of infrared BT
(p1: 11.2 pm, po: 12.0 um, ps3: 6.7 pum and py: 3.9 um) derived from radiometer FY-2D satellite data. A grid of atmospheric
profiles was generated with the WRF model. This grid with different cloud micro-physical schemes was used as input for
the RTTOV to simulate BT. Scheck (2021) proposed to use MLP to emulate the theoretical reflectance calculation from the
MFASIS operator, where the DL model was used to replace the look-up table in Scheck et al. (2016). Similar approaches based
on MLP were presented in (Stegmann et al., 2022). They were also used to emulate 3D effects on RT (Meyer et al., 2022) and
to generate near-infrared satellite images (p1: 1.6 um) in (Baur et al., 2023). Recently, Liang et al. (2023) used ML to assimilate
different bands of BT from Advanced Microwave Sounding Unit-A. In their framework, the satellite observed radiance was
assimilated using RTTOV and specific MLP models were trained for each band and satellite. Yu et al. (2023) proposed to use
ML models as emulators to simulate a subset of atmospheric radiation variables from a model simulation.

In this paper, we investigate the use of DL to predict products of atmospherically corrected observed albedo/emissivity
on land (atmospherically corrected bottom of atmosphere) like NDVI and BT simultaneously rather than training the neural
network to serve as an emulator for a predefined physical-based RT model. In other words, our training data are derived
from real-world satellite observations (empirical operator) without assimilating data or assumptions about radiations. Unlike
aforementioned works, we use input data from CLM (surface) and ParFlow (sub-surface) for the neural network to account
for a more detailed representation of the reflectance/emissivity on ground and for land-atmosphere coupling. In addition, we
built our neural network on Vision Transformers (Dosovitskiy et al., 2021) and Convolutional Neural Networks (CNN) models
taking into account the spatial context around each input pixel and operating on the whole scene at once. This was motivated
by previous studies that indicate that an effective model of the environment should consider the spatial-correlation within the

domain (see Sect. 2.2).
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2.2 Vegetation health prediction

A plenitude of studies exist about vegetation health prediction and forecasting from Earth observations. Unlike hydro-meteorological
130 variables that can be predicted or forecast using NWP, vegetation products demand an extended modeling representation of the
surface and sub-surface (Lees et al., 2022). Recently, Salakpi et al. (2022a, b) predicted short-term VCI based on previous veg-
etation conditions and observational anomaly indices in a Bayesian auto-regressive approach. However, the interaction between
vegetation and climate variability exhibit strong non-linear behaviours. In this respect, many studies explored the applicability
of DL for vegetation health monitoring using climate models and remote sensing data (Ferchichi et al., 2022). In Wu et al.
135 (2020), a MLP was used to model the relation between NDVI and precipitation. Kraft et al. (2019) built a global model for
NDVI dynamics using variables from ERA-Interim (Dee et al., 2011) together with static variables as predictor variables. They
built their models on a recurrent network with long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and MLP.
In a different study, Prodhan et al. (2021) predicted the soil moisture deficit index (SMDI) using MLP, random forests (RF), and
a global land data assimilation system (Rodell et al., 2004). Others aimed to forecast or synthesize vegetation products from
140 past spectral information (Nay et al., 2018; Yu et al., 2022) or vegetation statistics (Das and Ghosh, 2016; Adede et al., 2019).
Furthermore, Lees et al. (2022) used ERAS data (Hersbach et al., 2020) and past vegetation conditions to predict short-term
VCI using an LSTM. Vo et al. (2023) proposed to use an LSTM for short-term forecasting of the natural drought index (NDI),
using an ensemble of climate model forecasts and observational data as input. Another approach was presented in (Hammad
and Falchetta, 2022) to predict short-term VHI based on probabilistic random forests (Meinshausen and Ridgeway, 2006) and
145 past Earth observations. Recently, Requena-Mesa et al. (2021) addressed the problem of optical satellite imagery forecasting as
a guided video prediction task. In their framework, vegetation dynamics approximated by NDVI is modeled at high resolution
using past satellite images as initial conditions and static and reanalysis data as a model guidance. Similar approaches with
this framework were presented in (Robin et al., 2022; Kladny et al., 2022; Diaconu et al., 2022) and on a continental-scale in
(Benson et al., 2023). While these works differ in their methodologies, i.e. in the predicted vegetation products, model archi-
150 tectures, and spatio-temporal resolutions, they have overall a good performance for short-term forecasting. Nonetheless, only
few studies address long-term vegetation conditions forecasting. Marj and Meijerink (2011) presented an approach based on
MLP and two climate signals to forecast vegetation conditions like NDVI and VCI in the next growing season. In a later study,
Miao et al. (2015) aimed to model the future change of GIMMS NDVI3g (Pinzon and Tucker, 2014) based on an ensemble of
climate scenarios CMIP5 (Taylor et al., 2012) on a decadal-scale from 2020 to 2100. They first used a linear regression to learn
155 the relation between climate observations and NDVI data and then used the learned relations along with climate scenarios to do
the forecasting. A similar line of research was conducted by Patil et al. (2017). They employed a RF to model NDVI images. In
their work, a RF was trained with historical climate data from the WorldClim dataset (Hijmans et al., 2005) to predict visible
and near-infrared bands observed by Landsat 7. The trained model was then used to forecast land cover response based on a
climate change scenario for the period 2061-2080. More recently in (Chen et al., 2021), an LSTM model was used to predict
160 NDVI on a global-scale while Wei et al. (2023) proposed to forecast the leaf area index (LAI) based on a climate projection

using a RF model trained to predict LAI from historical data.
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Most studies focused only on a single indicator like NDVI excluding BT. The combination of NDVI and BT with their
corresponding drought indices provides complementary information on the vegetation state and is beneficial for vegetation
monitoring (Yang et al., 2020). In this study, we aim to use DL to predict vegetation products like NDVI, BT, VCI, TCI,
and VHI at a continental-scale from a regional climate simulation. We also focus on long-term forecasting without using an
initial state, i.e., satellite images from previous time steps. Previous works train and evaluate DL. models on biased-corrected
reanalysis data. In contrast, we evaluate the approach with real-world observations using a run of the simulation in the past.
It is worth to note that this evaluation is more consistent with real-world deployment schemes, since it is questionable how a
model that has been trained and evaluated on reanalysis data will perform on a biased climate projection simulations. Thus,
we opt for a simulation that mimics a climate projection of the past and train and evaluate the model on it to internally correct

biases and predict vegetation products.

3 Datasets and data preprocessing

In this section, we describe the datasets used in the experiments. The TSMP simulation is presented in Sect. 3.1, the observa-
tional remote sensing data for model training and evaluation are presented in Sect. 3.2, and the preprocessing framework of the

data is described in Sect. 3.3
3.1 Regional Earth system simulation

For this study, we use the simulation produced by Terrestrial System Modelling Platform version 1.1. (TerrSysMP or TSMP)
at the Research Centre Jiilich (FZJ) at IBG-3 Institute and originally described in (Shrestha et al., 2014) and (Gasper et al.,
2014). The simulation used in this study is introduced in (Furusho-Percot et al., 2019). TSMP is a physics-based integrated
simulation representing a near-nature realization of the terrestrial hydrologic and energy cycles that cannot be directly obtained

from measurements. Its setup consists of three main interconnected model components:

— The Consortium for Small Scale Modelling (COSMO) version 5.01 is a numerical weather model to simulate the diabatic

and adiabatic atmospheric processes (Baldauf et al., 2011).

— The Community Land Model (CLM) version 3.5 to simulate the bio-geophysical processes on the land surface (Oleson

et al., 2004, 2008).

— ParFlow version 3.2. is a hydrological model to explicitly simulate the 3D dynamic processes of water in the land surface
and underground (Jones and Woodward, 2001; Kollet and Maxwell, 2006; Jefferson and Maxwell, 2015; Maxwell et al.,
2015; Kuffour et al., 2020).

ECMWF ERA-Interim data (Dee et al., 2011) were used to define the initial and boundary conditions for the simulation.
Based on this setup, a spinup of 10 years was conducted to reach the dynamic equilibrium before the actual run. We selected

29 main variables from COSMO, 8 variables from CLM, and 2 main variables from ParFlow. Additionally, we used 3 static
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variables from the analysis (Poshyvailo-Strube et al., 2022). An analysis about the explanatory variables is provided in Sect. 7
and variable descriptions are listed in Tables Al and A2. The three model components were fully coupled via the OASIS3
coupler (Valcke, 2013) to form a unified soil-vegetation—atmosphere model. This scheme was built without nudging or any
type of DA allowing the free-running of the simulated variables. Thus, TSMP is ideal for representing the heterogeneity of the
water cycle from the subsurface to the top atmosphere in a free evolution. In addition, the long-term simulation is performed
for a historical time period from January 1989 until summer in September 2019 with output variables aggregated on a daily
basis and extended over the Europe EURO-CORDEX EUR-11 domain (Giorgi et al., 2009; Gutowski Jr. et al., 2016; Jacob
et al., 2020) with various vegetation types and climate conditions. The grid specification for TSMP is a standardized rotated
coordinate system (dmetqa = 39.5° N, Apetqe = 18° E) with a spatial resolution of ~ 0.11° (~ 12.5 km) and 412 x 424 grid
cells in the rotated latitudinal and longitudinal direction, respectively. These spatio-temporal dimensions and model setup
make TSMP suitable for climatological studies at a continental-scale. For recent evaluations of TSMP processes, please see
(Furusho-Percot et al., 2022) and (Naz et al., 2023) and for recent studies of applying DL on TSMP simulations, please see
(Patakchi Yousefi and Kollet, 2023) for bias correction and (Ma et al., 2021) for drought analysis.

3.2 Observational remote sensing data

Satellite-based vegetation health products were obtained from the National Oceanic and Atmospheric Administration (NOAA),
Center for Satellite Applications and Research (STAR) (https://www.star.nesdis.noaa.gov/star/index.php). The blended version
(Yang et al., 2020) is composed of long-term remote sensing data derived from two systems of satellites: Advanced Very High
Resolution Radiometer (AVHRR) from 1981 to 2012 and its successor Visible Infrared Imaging Radiometer Suite (VIIRS)
from 2013 onward. The dataset includes two essential products, namely NDVI and BT (Table A3). NDVI is computed from
the red (pr) and near-infrared (p;r) bands:

(PNIR — PR)

NDVI = .
(pNIR+ PR)

6]

The NDVI is unitless and given in the range [-0.1, 1]. Same NDVI values should not be interpreted similarly for different
ecosystems. In other words, the interpretation is highly dependant on the location and ecosystem productivity (Kogan, 1995b).
BT is derived from the infrared (p;r) band and given in Kelvin (K°) within the range [0, 400]. To handle high frequency
noise caused by clouds, aerosol, and atmospheric variation along with different random error sources, NDVI and BT were
temporally aggregated into smoothed noise reduced weekly products. In addition, post-launch calibration coefficients and
solar/sensor zenith angles are applied to account for sensor degradation and orbital drift. The outlier removal is essential to
exclude invalid measurements. Additionally, this weekly temporal resolution is enough to capture the phenological phases of
vegetation and adequate for satellite data application (Kogan et al., 2011; Yang et al., 2020). Based on NDVI, BT and their
long-term climatologies, the upper and lower bounds of the ecosystem can be estimated. Consequently, VCI, TCI, and VHI
can be derived pixel-wise (Kogan, 1995a, 1990). The vegetation condition index is given by:

(NDVI — NDVI,,,.,)
(NDVI,00 — NDVI,i )

VCI = 100 with VCI € [0,100], )
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where NDVI is the weekly noise reduced NDVI, and NDVI,,;,, and NDVI,,, . the multi-year weekly absolute minimum and
maximum NDVI values, respectively. The thermal condition index is given by:

(BT,0z — BT)

TCI =100
(BTmax - BTmzn)

, with TCI € [0,100], (3)

where BT is the weekly noise reduced BT, and BT,,;,, and BT,,, the multi-year weekly absolute minimum and maximum

BT values, respectively. The vegetation health index is given by:
VHI = (a)VCI + (1 — «)TCI, with VHI € [0,100], 4

where « is a weighting coefficient. While VClI is a proxy for the moisture condition and its lower values reflect a water-related
stress, TCI is a proxy for the thermal condition and its lower values indicate a temperature and wetness-related stress. The
composite index VHI is a linear combination of the former two indices to approximate the vegetation health. VHI fluctuates
annually between 0 (unfavourable condition) to 100 (favourable condition). The values of these indices above 100 and below 0
are clipped. Moreover, the dataset is provided globally with ~ 0.05° (~ 4 km) spatial resolution mapped into the Plate Carrée
projection. NOAA VP have been broadly used for research and real-world applications. For a summary on the validation and

studies that use this dataset for agricultural droughts monitoring, we refer to Yang et al. (2020).
3.3 Preprocessing

In this section we describe the data preprocessing that is needed prior to apply DL. Overall the TSMP has 30 years of data
(1989-2019). We reserved the years 1989-2009 (AVHRR era) and 2013-2016 (VIIRS era) for training, 2010-2011 (AVHRR
era) and 2017 (VIIRS era) for validation, and 2012 (AVHRR era), 2018-2019 (VIIRS era) for testing. For TSMP, we excluded
the lateral boundary relaxation zone by removing invalid grid points from the boundaries. This results in a final grid with
397 x 409 grid cells in the latitudinal and longitudinal direction, respectively. In order to connect local-related characteristics
to climate conditions, we computed 3 additional static variables from the static variables described in Table A2. We computed
slope (Horn, 1981) and roughness (Wilson et al., 2007) from orography and distance to water from the land/sea mask. Due to
the fact that the remote sensing data were obtained from two different satellite systems, the data derived from VIIRS have to
be first adjusted to insure continuity and consistency with the data derived from AVHRR. Yang et al. (2018, 2021b) showed
that the discrepancy between sensors are mainly due to the differences in spectral response ranges and calibration parameters.
This has a larger effect on NDVI/VCI than on BT/TCI (Kogan et al., 2015). Considering this issue, we followed the same
re-compositing approach described in Yang et al. (2021b) to generate cross-sensor vegetation products for the time period from
2013 to 2019. In fact NDVI/BT from different sensors can be decomposed into climatologies and VCI/TCI. The climatology
provides information about the Ecosystem and it is sensor-specific. While VCI/TCI for the same ecosystem location are cross-
sensor. Thus, using climatology from AVHRR and VCI from VIIRS, Eq. (2) can be reformulated to re-compose NDVI for
VIIRS as following:

y _ ([ VClv11rs)
NDVIv Ry =\ — 00 (NDVI(nae,av HRR) — NDVI(imin avERR)) + NDVImin AvHRR) %)
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where NDVIQ AVHRR) is the converted weekly noise reduced NDVI from VIIRS to AVHRR, VCl(yrRrs) is the Vegetation
Condition Index derived from VIIRS, NDVI(;,in, avrrR) and NDVI (00 avrRR) are the multi-year weekly absolute mini-

mum and maximum NDVT values (climatology) derived from AVHRR, respectively. Similarly from Eq. (3) we have:

BT 1y #rr) = BT (maz,AVHRR)— (W) (BT (mmaz,AvEHRR) — BT (min,AVHRR)) ; (6)
where BT’( AVHRR) is the converted weekly noise reduced BT from VIIRS to AVHRR, TCl(y;rrs) is the Thermal Condition
Index derived from VIIRS, BT (;1in, AvERR) a0d BT (;h42, AV HRR) are the multi-year weekly absolute minimum and maximum
BT values (climatology) derived from AVHRR, respectively. Please note that VCI (v ;rgs) and TCl(y;7rs) were based on a
pseudo long-term VIIRS climatology (for more details on this, please see Yang et al. (2018)). In addition, the TSMP simulation
and target remote sensing data have to be spatially aligned in the same domain. After the continuity at NDVI and BT level has
been realized, we mapped these two products into the TSMP rotated coordinate system over the EURO-CORDEX EUR-11
domain. For the mapping, we up-scaled the data from 0.05° to 0.11° resolution based on a first-order conservative mapping
(Jones, 1999) using the package from Zhuang et al. (2020). For calculating the spatial mean, we excluded invalid, water, and
coastal lines pixels. Afterwards, we computed VCI, TCI and VHI based on Eq. (2)-(4). We note that the weighted coefficient
a in Eq. (4) can be empirically calibrated as a spatially variant factor (Zeng et al., 2022, 2023). Following previous works,
we set « to its standard value 0.5 in all experiments as in Yang et al. (2020). Furthermore, masks over desert and very cold
areas were extracted from the quality assurance (QA) metadata provided with the data. Eventually, the preprocessed data are
aggregated into data cubes on a weekly basis and stored as netCDF files. This observed remote sensing dataset can serve as
a reference to train and evaluate the DL model performance. Overall, this includes 1263, 156, and 139 samples (weeks) for
training, validation, and testing, respectively. To avoid overfitting or the domination of few input variables, we normalized the
input of TSMP by subtracting the mean and dividing by the standard deviation corresponding to each input variable. These
statistics were computed only from the years that are used for training. The invalid values of pixels were replaced with zeros

values as input to the DL model.

4 Methodology

Problem formulation. Given TSMP € RV *T>*W>H a4 3 climate change simulation, where V' is the number of output variables
from the COSMO, CLM, and ParFlow models and the static forcing variables, 7" is the temporal dimension and W and H are
the spatial extensions, our objective is to construct a mapping function f to predict NDVI € R/XWxH and BT € RIXWxH op

a weekly basis:
[ : (TSMP;6) — (NDVI,BT), @)

where [ is the number of weeks and 6 are the weights of the model. To accomplish this, we propose to approximate this function
using a DL model based on a U-Net (Ronneberger et al., 2015) with focal modulations (Yang et al., 2022) as building blocks.
The input for DL is a data cube representing a specific week ¢ of TSMP data and the output are NDVI and BT corresponding to
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Figure 1. An overview of the proposed model to predict NDVI and BT from a TSMP climate simulation. The model follows the U-Net
shape with encoder and decoder layers. We use focal modulation as the basic building block for the model. The input TSMP simulation is
first encoded into a latent representation via encoder layers. In a subsequent step, the decoder constructs new features to be given as input to
two separated regression heads that output NDVI and BT simultaneously. The predicted NDVI and BT can then be used to derive different
agricultural drought indices such as VCI, TCIL, and VHI.

the same week i. We denote the weekly averaged input data cube produced by TSMP as X* € RV*WxH ‘Where we obtain X*
by taking the mean of the days corresponding to the week ¢. For simplicity, we will drop the notation ¢ in the following sections.
First, the network architecture is introduced in Sect. 4.1 and the focal modulation is then described in Sect. 4.2. Finally, we

discuss the loss functions in Sect. 4.3.
4.1 Model architectures

The model design follows the U-Net shape with encoder and decoder layers connected via skip connections and followed by
two regression heads. Figure. 1 provides an overview of the model architecture. The model consists of the following main
parts:

Patch embedding. The patch embedding is implemented as a single 1D convolution, where one patch is equivalent to one
pixel. The role of this embedding is to project the input X from V' dimension into a channel dimension that matches the
channel dimension C',, 1) of the first encoder block. In contrast to related works with transformers, we do not reduce the
spatial resolution at this step. This is important to mitigate blurring effects for regression tasks. An analysis of the impact of
the patch size for embedding is provided in Appendix E.

Encoder. The encoder consists of 3 encoding layers. Each layer has 2 consecutive focal modulation blocks that have the

same number of channel dimension. We use focal modulation to capture local to global dependencies in the domain (Sect. 4.2).

10
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We apply down-sampling on the output of the first two encoder layers to reduce the spatial resolution by a factor of 2 and
double the number of channels. The down-sampling is implemented as a 2D convolution with 2 x 2 kernel size and stride of
2. We set Cep,1) = 96 as the number of channels of the first encoder layer. Consequently, the encoder has the dimensionality
{Clen,1) = 96,Cen,2) = 192,C(cn 3y = 384}, where Ccy, 2 is the dimensionality for the second encoder layer and Ccp, 3)
is the dimensionality for the third encoder layer. The encoder allows the network to extract low to high level features in a
hierarchical way. Note that focal modulation allows an additional hierarchical feature extraction at each level (Sect. 4.2).

Skip connections. These connections copy outputs from each encoder layer into its corresponding decoder layer. The purpose
of this is to enhance the gradient flow in the network and preventing vanishing gradient issues.

Decoder. The decoder has a similar design to the encoder. It consists of 3 decoder layers with 2 consecutive focal modulation
blocks for each decoder layer. The input for the first decoder layer is the output of the last encoder layer copied via a skip
connection. While the input for the second and third decoder layers is a concatenation of the output from the previous decoder
layer with the output of the corresponding encoder layer. The outputs of the first and second decoder layers are up-sampled to
double the image size and reduce the dimensionality by a factor of 2. The up-sampling is implemented as a bilinear interpolation
followed by a 2D convolution with 1 x 1 kernel size and stride of 1. The decoder layers has the dimensionality {Cge,1) =
Clen,3) = 384,Cge,2) = Clen,2) + Clae,1) = 384,Cqe,3) = Clen,1) + Cae,2) = 288}, where Cge, 1), Clge,2), and Cqe 3) are
the dimensionality for the first, second, and third decoder layers, respectively. The purpose of the decoder is to gradually
construct the input for the regression heads from the encoded features.

Regression heads. The ouput of the last decoder layer is then given as input to two separated regression heads to predict
NDVI and BT. Each head has two 2D convolutions with 3 x 3 kernel size and stride of 1 with a LeakyReLU activation in

between. The regression head reduces the dimensionality from C'4. 3y = 288 to 128, and then 1.

L ~@J O
Input XK Output

D LayerNorm l Focal Modulation Feed-Forward Layer @ Element-wise Addition

4.2 Focal Modulations

Skip Connection

Figure 2. An illustration of the focal modulation block. It follows the typical transformer block with a focal modulation instead of self-

attention. X* represents the input to the k-th block

The recent applications of Vision Transformers (ViT) have covered many tasks in the field of computer vision. The network

design of ViT along with the multi-head self-attention mechanism (Vaswani et al., 2017) allow ViT to stand as the state-of-the-

11
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art backbone in recent DL models. In contrast to CNNs, ViTs with self-attention modules can handle long-range interactions
across tokens (pixels) more efficiently In a nutshell, the self-attention module aims to transfer pixels representation of a given
image into a new feature representation based on a weighted aggregation of interactions between every individual pixel and its
surrounding. This mechanism allows the model to focus on more relevant regions of the input images. Despite this powerful
transforming process, the computational requirement of a standard ViT has limited its applications. More recently, the Focal
Modulation Network (Yang et al., 2022) has been introduced to substitute the self-attention mechanism with a lightweight
focal module. In contrast to self-attention, focal modulation starts with contextual aggregation and ends with interactions.
Based on this recently introduced mechanism, DL models were developed for medical image segmentation (Naderi et al.,
2022; Rasoulian et al., 2023), change detection for remote sensing data (Fazry et al., 2023), and video action recognition
(Wasim et al., 2023). We build our model on focal modulation networks and extend their applications in Geoscience. We first
describe how the block is implemented and then describe the main focal modulation module denoted as FocalModulation.
Fig. 2 illustrates the architecture of the focal modulation block used in both the encoder and decoder layers. The design follows
a typical transformer block. Let X* € RV xCEXWHxH" pe the input at the k-th block, where N is the batch size (number of
input tensors), C* is the number of input channel, and Wk and H* are the spatial resolution. First, the input is normalized
across N via a layer normalization (Ba et al., 2016) denoted as LayerNorm. Using the indices n € {1,..., N}, ¢ € {1,...,C*},
wh € {1,...,W*}, and h* € {1,..., H*}, the LayerNorm can be written as:

ck wk hk) T

Py
& ) . rylk(ck7wk7hk) +ﬂlk(ck7wk,hk)7 (8)

On

Xk
LayerNorm(X*; (vF, BF)) = ( =

Clc Wk Hk

1
oy = CFWEHE I X (ck ok k) )

ck=1wk=1h*k=1

Ck Wk HE

o=\ G 2 2 2 Ky 10

ck=1wk=1hk=1
where X7 i,k x) is the input tensor of order 7 in the batch, 4 and of are the computed mean and standard deviation

n(ck
k k
XWEXHT are per-element

of the corresponding input X (.« ,x ), and ’Vf(ck7wk7,Lk) € RCF W xH" anq ﬁf(c’“,w’“,h") cRC"
learnable parameters. These learnable parameters are shared across input tensors. The output of LayerNorm is then passed
into the function FocalModulation. After that, the output of the first part is normalized by a second LayerNorm and passed
into a feed-forward layer. The feed-forward layer consists of a one linear layer that maps the dimentionality to 7,,;, x C*
followed by a GELU activation (Hendrycks and Gimpel, 2016) and a second linear layer to bring the dimensionality back to
C*, where Tmip 1 the MLP ratio parameter. We set 7,,,,, to 4 for the encoder and decrease it to 2 for the decoder to reduce

model parameterization. The output of each block can be formulated as follows:

FocalModulationBlock(X*) £ ~% (Feed-ForwardLayer(LayerNorm(~¥FocalModulation(LayerNorm(X*)) 4+ X*)))

+ (v¥FocalModulation(LayerNorm(X*)) + X*)),  (11)

k k .
where v¥ € RY" and 45 € RC" are learnable scaling parameters.

12
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Figure 3. An illustration of the function FocalModulation at k-th block. It consists of 3 main parts: focal contextualization, gated aggregation,
and interaction. First, the query, value and gates are obtained by projecting X* with linear layers. Then, a stack of depth-wise 2D convolutions
followed by a global pooling is used on the value to derive contextual features around pixels. Gates are used to adaptive aggregate contextual
features into a modulator. Finally, the interaction between queried pixels and the modulator is performed and projected by a final linear layer

to compute the output. The shown are examples of learned gates along with the pixel-wise magnitude of corresponding modulator at the first

block encoder.

The heart of each focal modulation block is the FocalModulation. As seen in Fig. 3, it consists of three main steps: hierar-
chical contextualization, gated aggregation, and interactions.

Hierarchical contextualization. The objective of this part is to encode local to global range dependencies for every pixel.
It is based on focal transformer (Yang et al., 2021a) and aims to extract features at 4 different levels. Let X* be the input
for FocalModulation and L = 4 be the number of levels. First, X* is projected by a linear layer into a new representation
L% = Linear(X*) € RN xCFxW xH" - Afterwards, the contexts are obtained in a recursive manner using a sequence of 3
depth-wise 2D convolutions (DWConv2D) with GeLU activation and with increased receptive fields. In DWConv2D, each
output channel corresponds to a convolution on one input channel. We denote r; as the kernel size at level [ and start with
r1 = 3. Thereby, the kernel sizes at the focal levels have the values r1=3, r2=5, r3=7. To obtain a global feature representation,
a global average pooling (GAP) followed by a GeLU activation is applied at level [ = 4. Using the index [ € {1,..., L}, the

hierarchical contextualization can be formulated as follows:

GeLU(DWConv2D(L¥ ), if1<I<L,
Lfé ( ( l 1)) (12)

GeLU(GAP(L} ,)), otherwise.

13
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Gated aggregation. The gated aggregation adaptively summarizes the extracted hierarchical contexts Lf into a modulator.
First, X* is projected by a linear layer into 4 gates G* = Linear(X*) € RNV*LxW"xH" ' Ag can be seen from the example in
Fig. 3, the third gate focuses on the water area while other gates focus on different segmented regions. This allows each pixel to
adaptively aggregate features from different semantic regions conditioned on its context. Pixels in a less dynamic environment
may depend on more distant pixels while pixels in a more dynamic environment may depend more on the local context. The

aggregation is performed over different focal levels and followed by a linear layer:
L
Xk 2 Linear(z Gy oLy), (13)
=1

where Xk € RN*C"xW*xH" j¢ the contextual aggregated features for each pixel called the modulator, G¥ is the gate corre-
sponding to level [, and ® is the Hadamard operator (element-wise multiplication).

Interaction. Finally, the interactions between the queried pixels and the modulator is given with the following formula:
FocalModulation(X*) £ X% © Linear(X*) € RN*C"xW"xH" (14)
4.3 Loss function

For training we use the Mean Absolute Error (MAE) as a loss function, since it is less sensitive to outliers:

N W H

1 .
LMAE = T ;;; Yenw ) = Y (15)

where N is the batch size, and Y(;, 1) and }A/(n’w, n) are the predicted and observed images, respectively.

In addition, to increase local variability and balance the blurring effects from Eq. (15), we use a perceptual loss (Ledig
et al., 2017; Johnson et al., 2016) based on a pre-trained VGG-19 network (Simonyan and Zisserman, 2014) on ImageNet
(Deng et al., 2009). This additional loss constrains the generated images to have a similar structure and spatial variability to
the target observed images by comparing multi-level features extracted by a VGG classifier network from both the predicted

and observed images:

J
Lvee =8Lyge + ZLQ/GG ’ (16)
j=2

N ¢ W’ HI

_ 1 . L
Lyae = NCOIWIHT Z Z Z Z 1" (Yingewn)) = @ (Yingeawn)ls (17)

n=1c=1w=1h=1

where .J is the number of levels from which the VGG features are extracted, W7 and HY are the spatial extensions of the
respective level within the VGG classifier, C7 is the number of channel dimension of the respective level, and ¢/ (Y{,, j.c.w.n,))
and ¢/ (Y(n j,eawsh,)) are the extracted features at level j from the predicted and observed images, respectively. In contrast to
classification problems where high level features play more important role, we multiply the low level features by a weighting

factor of 8 to preserve the local features and give them more importance since these are more relevant to our regression task.

14
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The VGG network was originally trained with RGB images and giving NDVI and BT as input is not directly possible. To solve
this issue, we replicate NDVI and BT along the channel dimension and feed each of them separately to the VGG network.
The impact of using this perceptual loss is evaluated in Appendix D. The entire loss function to be minimized is thus given as

follows:
L= Lyan +01LY56 + Lias +0.1L7 G (18)

where LYQY!1 and £ ZY ! are the MAE and VGG losses on NDVI and L5,  and £BZ , are the MAE and VGG losses on
BT, respectively. The weighting factor 0.1 is set to balance the losses. The model is trained with a stochastic gradient descent.

More technical details regarding the training are provided in Sect. 5.

5 Experimental results and analysis

Performance Metrics. To measure the model performance, we use the Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), coefficient of determination (R?), Pearson Correlation Coefficient (Rp), and Spearman Correlation Coefficient (R).
In addition, we compute the Bias as (predicted — observed = Y{,, ) — }A/’(w r))- We compute the metrics for each sample and

then average the values to obtain the last metrics. MAE is computed from Eq. (15). While RMSE can be calculated as follows:

W H
. 1 . 2
RMSE(Y(w,n): Yiw,n)) = Wi Z Z (Yew,n) = Yewny) - 19)
w=1h=1

R? measures the variation of the perdition from the regression fitted line and it is calculated as follows:

w H A 2
9 w= = (Yw7 _Yw,
R (Vo Fiuoy) = 1 — 2=t 2zt Vot = Vo) 0)

Yoot St (Vo) = Yiuwm)

where }ﬁf(w, n) is the overall mean observed value. The highest value for R? is 1 which represents a perfect fit. Please note that
R? measures the variability in )A/(w, n) predicted by the model thus it is by definition inversely proportional to the variance and
noise in the observations and should be interpreted carefully.

Pearson correlation (R,,) is a parametric correlation that measures the linear correlation between the predicted and observed

values:
Z 1Zh 1(}/Ew h) — }7(11} h))(ff(w }L)_}7(HJ h))
e o Vo PV S By — Vo)

where 17(7,), r) is the mean predicted value. The best value for Ry, is 1 which represents a perfect positive correlation.

(Y—(w h)aYv(w h) (21)

2 b

Spearman correlation (R;) is a non-parametric measure of relationship between predicted and observed values that can be

calculated as follows:

Ry (Yo 1)s Ywn)) = Rp(R(Ywn))s RV (w.))) (22)
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where R(Y(, )) and R(Y(m py) are ranks obtained from the predicted and observed values, respectively. A perfect positive
correlation occurs when R is 1.

Comparison with state-of-the-art algorithms. We study the performance of recently developed vision transformers on our
task. We achieve this by sharing the overall model architecture and implementing the main building block inside the encoder
and decoder according to different algorithms. The implemented models are as follows:

U-Net. We implemented this model as a variation model with 2D CNN instead of Focal Modulation blocks, where we follow
the same model of Focal Modulation design but replace the main building blocks with residual Convolutional blocks. It serves
as a baseline of typical U-Net models.

Swin Transformer V1 (Liu et al., 2021) performs self-attention in shifted windows to reduce the computational complexity
compared to the original ViT. Transformers based on this model have been commonly applied for variety of tasks in remote
sensing and computer vision.

Swin Transformer V2 (Liu et al., 2022) is an improved model of Swin V1. The attention mechanism is replaced with a
scaled cosine attention to measure pixel feature similarities. Swin V2 utilizes post normalization layers inside the main block
thus making the optimization of large models more stable. In addition, it proposes to replace the positional encoding inside the
windows with a log-spaced continuous one to ease downstream tasks with pre-trained models.

Wave-MLP (Tang et al., 2022) is a MLP-Mixer-based transformer model. The basic block is built on a stack of MLP. Wave-
MLP represents each pixel as a wave function with amplitude features representing pixel contents and phase to measure the
relations with other pixels.

A part of these models, we report the results for two climatology baselines. The climatology is based on multi-year mean
values computed for each pixel and week separately. The first is a climatology (1981-1988) which represents a climatology
computed before the beginning of the simulation. The second is a climatology (1989-2016) which represents a strong climatol-
ogy baseline computed over the training years during the simulation. Please note that the later climatology is unrealistic, since
it computes statistic in the futures. However, it represents a function that models the annual cycles and it can be used to check
if the models only converges to the mean values of the predicted variables. We also note that to the best of our knowledge,
currently there is no complete physically-based model that approximates the function in Eq. (7) to be compared with.

Implementation Details. We re-implemented all aforementioned DL models in our framework and trained them with a fixed
random seed, this insures reproducibility and fair comparison. All models have almost the same capacity with ~ 12 million
parameters. The encoders for transformer models were pre-trained on ImageNet-1K (Deng et al., 2009) while the weights in
the decoders and regression heads were initialized randomly from A/(0,1=0.02). To increase generalization and robustness of
the models, we use 3 augmentation techniques. This includes flipping and rotating of the input with a probability of 0.5 and
randomly perturb the input variables by adding noise € ~ A/ (0,1=0.02) with a probability of 0.5. In addition, to generate the
input corresponding to week ¢ during training, we randomly average two days corresponding to the week . All models were
trained with the £ loss Eq. (18) using the Pytorch framework (Paszke et al., 2019) with a learning rate 0.0003 and a scheduler
to decay the learning rate by a factor of 0.9 every 16 epochs. AdamW optimizer (Loshchilov and Hutter, 2019) was used for
the gradient descent with (8; = 0.9, B2 = 0.999) and a weight decay 0.05. We use dropout probability of 0.2 and a stochastic
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Table 1. Comparing the performance of different DL models. The metrics are shown for the validation and test sets.

EGUsphere\

Validation - Years (2010, 2011, 2017) - 156 weeks

NDVI BT (K°)
Algorithm  MAE(]) RMSE(l) R*) Ry(I) R«(1)  MAE(]) RMSE(}) R*(1) Ry() R«
Climatology 1981-1988  0.0550 0.0680 0.5763 0.8939 0.8669 2.9130 3.7302  0.8454 0.9466 0.9408
Climatology 1989-2016  0.0326 0.0416 0.8372 0.9353 0.9113 2.3017 3.0020 0.8963 0.9601 0.9539
2D CNN 0.0278 0.0365 0.8746 0.9405 09171 1.9484 2.6067 0.9252 0.9671 0.9606
Wave-MLP 0.0274 0.0361 0.8765 0.9403 0.9166 1.9755 2.6395  0.9208 0.9662 0.9596
Swin Transformer V1~ 0.0276 0.0364 0.8743 0.9396 0.9136 1.9599 2.6369  0.9221 0.9658 0.9589
Swin Transformer V2  0.0274 0.0366 0.8727 0.9413 0.9173 1.9755 2.6282  0.9235 0.9663 0.9597
Focal Modulation 0.0270 0.0359 0.8781 0.9433 0.9184 1.8981 2.5433  0.9266 0.9679 0.9613

Test - Years (2012, 2018, 2019) - 139 weeks

NDVI BT (K°)
Algorithm  MAE(]) RMSE() R*1) Ry(1) R«(1)  MAE(]) RMSE(}) R*(1) Ry R«(1)
Climatology 1981-1988  0.0567 0.0697 0.5529 0.8933 0.8704 2.8806 3.6864  0.8447 0.9485 0.9470
Climatology 1989-2016 0.0314 0.0400 0.8507 0.9433 0.9254 2.2024 2.8880 0.9036 0.9623 0.9606
2D CNN 0.0278 0.0363 0.8754 0.9434 0.9231 1.9782 2.6363 09187 0.9650 0.9616
Wave-MLP  0.0267 0.0351 0.8812 0.9444 0.9241 1.9576 2.6425 09162 0.9646 0.9620
Swin Transformer V1 ~ 0.0273 0.0359 0.8762 0.9431 0.9223 1.9525 2.6265 0.9183 0.9642 0.9620
Swin Transformer V2  0.0266 0.0355 0.8795 0.9452 0.9272 1.9048 2.5782  0.9213 0.9651 0.9629
Focal Modulation 0.0268 0.0353  0.8795 0.9452 0.9243 1.8730 2.5277 09227 0.9672 0.9642

455 depth rate of 0.3. We train with a batch size of N = 2 for 100 epochs. For Swin Transformers, we set the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>